
eBook

Unit Testing
The Definitive Guide

© Copyright Di�blue Ltd 2021

Find out more at di�blue.com 1

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

Table of Contents

Introduction 4

Chapter 1: How to write your first unit test 7

Chapter 2: How to measure coverage 14

Chapter 3: How to build a complete test suite 21

Chapter 4: Mocking in unit tests 25

Chapter 5: Finding the time and motivation to unit test 30

Chapter 6: How to avoid common mistakes 33

Chapter 7: How automated unit tests speed up continuous integration 35

Chapter 8: How to deliver on the promises of DevOps 38

Epilogue: Why imperfect tests are better than no tests 42

Find out more at di�blue.com 2

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

Introduction

Unit testing is really important for code quality (and for making your life
easier when hunting for bugs), but if you’ve never done it before, where do
you begin? To help out, we’re sharing the Definitive guide to Unit Testing in
Java. Throughout the course of the tutorial, the complexity of the code will
increase, but the tutorials will focus on the unit testing that is used.

Before we start, it’s useful to define what exactly a unit test is. There are
many di�erent types of testing, and unfortunately, there isn’t a clean line
between the di�erent definitions. Often, on forums like StackOverflow, there
are questions asking something like, “What makes a test a unit test vs
integration test?”

The short answer to these questions is usually, “Well, it depends on where
exactly you draw the line between di�erent types of testing.” The important
thing is that within your team or organization, you have a clear definition
that avoids any potential confusion or conflict.

Find out more at di�blue.com 3

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/blog/testing/software%20development/tutorials/what-are-the-different-types-of-tests
https://www.diffblue.com/

eBook

With that said, here are the characteristics that generally describe di�erent
types of testing.

Unit Testing
This is testing the smallest testable part of the code base. In Java, you could
consider a standalone method within a class as a unit, or you could consider
the class itself as the unit. There certainly should not be any interaction with
services outside of the product (e.g. Databases, Kafka, Web Servers). These
would typically be stubbed or mocked.

Unit tests often have a huge overlap with component testing.

Component Testing
This is testing a single component of the solution. Typically, in Java, a
module would be considered a component. The focus is on whether the
component delivers the required functionality for the rest of the solution. It
should not rely on other modules, as these would typically be mocked or
stubbed.

Integration Testing
Testing the interaction between two or more components in the product.
One of the key parts of an integration test is that it is testing, or relying on,
the actual behavior of an interface between two components. Essentially,
unlike component or unit testing, a change in either component can cause
the test to fail.

End-to-end Testing
This is testing the entire solution as the user is expected to use the system.
The testing should be done via the user interface. This will most likely involve
the use of specific automation tools, such as Selenium, for interacting with a
Web UI.

Find out more at di�blue.com 4

© Copyright Diffblue Ltd 2021

http://softwaretestingfundamentals.com/unit-testing/
https://www.guru99.com/component-testing.html
https://martinfowler.com/bliki/IntegrationTest.html
https://www.diffblue.com/

eBook

Acceptance Testing
Typically used by a client or stakeholder, acceptance testing is a set of tests
that prove the product is suitable for its intended use. Acceptance tests are
often also end-to-end tests, but with the specific purpose of preventing the
release or handover of a solution if they fail.

Find out more at di�blue.com 5

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

Chapter 1: How to write your first unit
test

Let’s use a web-based Java Tic-Tac-Toe game to demonstrate how to write
your first unit test. First, here’s the code that checks to see if anyone has won
the game:

public Player whoHasWon() {

ArrayList<Coordinate[]> winningPositions = new

ArrayList<>(); // rows

winningPositions.add(new Coordinate[] {new

Coordinate(0,0), new

Coordinate(1,0), new Coordinate(2,0)});

winningPositions.add(new Coordinate[] {new

Coordinate(0,1), new

Coordinate(1,1), new Coordinate(2,1)});

Find out more at di�blue.com 6

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

winningPositions.add(new Coordinate[] {new

Coordinate(0,2), new

Coordinate(1,2), new Coordinate(2,2)}); // columns

winningPositions.add(new Coordinate[] {new

Coordinate(0,0), new Coordinate(0,1), new Coordinate(0,2)});

winningPositions.add(new Coordinate[] {new

Coordinate(1,0), new Coordinate(1,1), new Coordinate(1,2)});

winningPositions.add(new Coordinate[] {new

Coordinate(2,0), new Coordinate(2,1), new Coordinate(2,2)});

// diagonals

winningPositions.add(new Coordinate[] {new

Coordinate(0,0), new Coordinate(1,1), new Coordinate(2,2)});

winningPositions.add(new Coordinate[] {new

Coordinate(2,0), new Coordinate(1,1), new Coordinate(0,2)});

for (Coordinate[] winningPosition : winningPositions) {

if (getCell(winningPosition[0]) ==

getCell(winningPosition[1])

&& getCell(winningPosition[1]) ==

getCell(winningPosition[2])) {

if (getCell(winningPosition[0]) != null) {

return getCell(winningPosition[0]);

}

}

}

return null;

}

Next, we should write some unit tests to ensure the behavior is correct and
doesn’t break in the future.

We will need to introduce a test framework into the project. For this example,
we will use JUnit. To do this in Maven, simply add the following to your
dependencies in the pom.xml

Find out more at di�blue.com 7

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>4.8.2</version>

<scope>test</scope>

</dependency>

Next, it’s time to create a class for the unit tests to exist in. We want the tests
to be in the same package as the class that we are testing. In our example,
this is package com.di�blue.javademo.tictactoe;

Which means that the file should be in com/di�blue/javademo/tictactoe.
For a Maven project, this needs to be prefixed with src/test/java

Therefore, the path from the project root is
src/test/java/com/di�blue/javademo/tictactoe.

This means that all the test classes are separated nicely from the main
source code.

Finally, the class should follow the format <class under test>Test which, for
this example, means the class will be BoardTest and the file will
beBoardTest.javaNote: when running tests with Maven, the default is to
search for classes that are su�xed with Test.

With all that in mind, create a class:

package com.diffblue.javademo.tictactoe;

public class BoardTest {

}

For this example, let’s create a test to check that detecting a player winning
through the top row works correctly.

Find out more at di�blue.com 8

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

Create a method for this test:

package com.diffblue.javademo.tictactoe;

import org.junit.Test;

public class BoardTest {

@Test

public void playerOTopRow() {

// Arrange

// Act

// Assert

}

}

This is slightly di�erent to the methods that you have written in your source
code.

First there is an annotation to say that this is a test:

@Test

Also, note the relevant import. This will tell the tools that this method is a test.
If you are using IntelliJ or Eclipse, you will see that you can now run this
method as a test.

This is a good time to point out that unit tests are designed to protect
against future mistakes. This means that your test needs to be easy to read
and understand both by other developers and your future self. To split up
tests to aid in readability, let’s add three comments: arrange, act and assert.

Now to start building out the test!
We need to set up an environment where the top row of the board is
Naughts:

Find out more at di�blue.com 9

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

package com.diffblue.javademo.tictactoe;

import org.junit.Test;

public class BoardTest {

@Test

public void playerOTopRow() {

// Arrange

Board myBoard = new Board();

myBoard.setCell(new Coordinate(0,0), Player.NOUGHT);

myBoard.setCell(new Coordinate(0,1), Player.CROSS);

myBoard.setCell(new Coordinate(1,0), Player.NOUGHT);

myBoard.setCell(new Coordinate(1,1), Player.CROSS);

myBoard.setCell(new Coordinate(2,0), Player.NOUGHT);

// Act

// Assert

}

}

Now we have a board that has Naughts winning through the top row. Next,
call the methodwhoHasWon() and collect the result.

package com.diffblue.javademo.tictactoe;

import org.junit.Test;

public class BoardTest {

@Test

public void playerOTopRow() {

// Arrange

Board myBoard = new Board();

myBoard.setCell(new Coordinate(0,0),Player.NOUGHT);

myBoard.setCell(new Coordinate(0,1),Player.CROSS);

myBoard.setCell(new Coordinate(1,0),Player.NOUGHT);

myBoard.setCell(new Coordinate(1,1),Player.CROSS);

myBoard.setCell(new Coordinate(2,0), Player.NOUGHT);

// Act

Player result = myBoard.whoHasWon();

Find out more at di�blue.com 10

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

// Assert

}

}

Now we have a test that sets up the environment and calls the method under
test.

There is one final step to complete the test: add an Assert. The assert is the
key part to the test, it is the thing that is checked to say whether the test has
passed or failed. Here, we are checking that result is naught.

Here is our complete test:

package com.diffblue.javademo.tictactoe;

import org.junit.Test;

import static org.junit.Assert.assertEquals;

public class BoardTest {

@Test

public void playerOTopRow() {

// Arrange

Board myBoard = new Board();

myBoard.setCell(new Coordinate(0,0), Player.NOUGHT);

myBoard.setCell(new Coordinate(0,1),Player.CROSS);

myBoard.setCell(new Coordinate(1,0),Player.NOUGHT);

myBoard.setCell(new Coordinate(1,1), Player.CROSS);

myBoard.setCell(new Coordinate(2,0), Player.NOUGHT);

// Act

Player result = myBoard.whoHasWon();

// Assert

assertEquals("Player O didn't win in the top row",

Player.NOUGHT, result);

}

}

Find out more at di�blue.com 11

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

Looking at the assert, note the message (first argument to the assert). When
a test fails, this message is printed in the results. This can give a clear
indication of what has gone wrong to the person debugging the tests.

Another note: the order of the arguments is the expected result first, and
then the actual result. Because tools will include the expected and the actual
results in the output, it is important to avoid confusion by getting these
correct.

Having finished the test, we can now run all the tests using mvn test and we
will see that our test passes:

[INFO]--

[INFO] TESTS

[INFO]---

[INFO] Running com.diffblue.javademo.tictactoe.BoardTest

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0,

Time elapsed: 0.018 s - in

com.diffblue.javademo.tictactoe.BoardTest

[INFO]

[INFO] Results:

[INFO]

[INFO] Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO]

The full source code for this tutorial is available here.

Congrats! With that, you’ve written your first test.In the next chapter, we’ll
discuss how to measure the code coverage of the tests you write.

Find out more at di�blue.com 12

© Copyright Diffblue Ltd 2021

https://gitlab.com/diffblue/examples/tictactoe/tree/tutorial-1
https://www.diffblue.com/

eBook

Chapter 2: How to measure coverage

Now that you’ve learned the basics of unit testing and have created your
first unit test, you’re probably wondering how several of these tests can be
combined to create a comprehensive test suite (and how many of these
tests you’ll need to write). In this chapter, we’ll talk about code coverage and
how to measure it.

Let’s begin!

How many unit tests should I write?
This is a common question for new unit testers. There are many schools of
thought about the answer, but the rule of thumb is,“enough tests to ensure
that serious regressions are not introduced as the code is modified.” So how
is this measured?

The most commonly used metric is code coverage. It’s not perfect, but it
does tell you how much of the code you’ve written is covered by tests. It is
widely known that high code coverage alone is not necessarily good;

Find out more at di�blue.com 13

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/blog/testing/how-and-why-to-set-code-coverage-targets-breaking-the-arbitrary-goal-trend
https://www.diffblue.com/

eBook

developers can write buggy code and then unit tests that pass with the
buggy code. However, low code coverage is definitely bad, because it means
your test suite is unlikely to catch issues that are introduced as the code is
modified.

Based on this, it makes sense to measure the code coverage for test suites
to help us identify code that is currently untested, as well as code that’s
unused or potentially dead. There are a number of tools available for
measuring code coverage, e.g. Cobertura and JaCoCo.

Getting Started
For the purposes of this tutorial, let’s use JaCoCo. Code coverage tools work
by instrumenting the class files so they can record which lines are executed.
With JaCoCo, there are two types of instrumentation:

1. Default: This is where the class files are instrumented on-the-fly as
they are called. The advantage of this is that it is the simplest to set
up.

2. O�ine instrumentation: This is where all the class files are
instrumented before running any of the tests. The advantage here is
that coverage will be recorded in more circumstances. See the
documentation for more details.

Given that o�ine instrumentation can give coverage information in more
circumstances than the default, let's set this up.

The first thing we need to do is to add the dependency to our pom.xml:

Find out more at di�blue.com 14

© Copyright Diffblue Ltd 2021

https://cobertura.github.io/cobertura/
https://www.jacoco.org/jacoco/
https://www.jacoco.org/jacoco/trunk/doc/offline.html
https://www.diffblue.com/

eBook

<dependency>

<groupId>org.jacoco</groupId>

<artifactId>jacoco-maven-plugin</artifactId>

<version>0.8.3</version>

<scope>test</scope>

</dependency>

Then we need to add the surefire plugin to the ‘build, plugins’ section of our
pom.xml:

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-surefire-plugin</artifactId>

<version>3.0.0-M3</version>

<configuration>

<systemPropertyVariables>

<jacoco-agent.destfile>

$/jacoco.exec

</jacoco-agent.destfile>

</systemPropertyVariables>

</configuration>

</plugin>

Note that we have specified a location for the jacoco.exec file. This is the raw
coverage file that is produced by JaCoCo.

Next, we will add the JaCoCo plugin to the build, plugins section of our
pom.xml:

Find out more at di�blue.com 15

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

<plugin>

<groupId>org.jacoco</groupId>

<artifactId>jacoco-maven-plugin</artifactId>

<version>0.8.3</version>

<executions>

<execution>

<id>instrument</id>

<phase>process-test-classes</phase>

<goals>

<goal>instrument</goal>

</goals>

</execution>

<execution>

<id>restore-instrumented-classes</id>

<phase>test</phase>

<goals>

<goal>restore-instrumented-classes</goal>

</goals>

</execution>

<execution>

<!-- Ensures that the code coverage report for unit

tests is created after unit tests have been run. →

<id>post-unit-test</id>

<phase>test</phase>

<goals>

<goal>report</goal>

</goals>

<configuration>

<!-- Sets the output directory for the code coverage

report. -->

<outputDirectory>$/jacoco</outputDirectory>

</configuration>

</execution>

</executions>

</plugin>

Find out more at di�blue.com 16

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

This is the bit that defines the process, essentially split into three parts:

1. Instrument the classes being tested

2. Restore instrumented classes

3. Generate code coverage report

Step one happens before the unit tests are run. Steps two and three are run
after the unit tests.

Now we are ready to see our first coverage report. We need to ensure that
all the stages are run now that we have added extra steps from the plugin,
so it’s best to run:

mvn clean test

From here, we will get a report that looks like this:

We can find the HTML version of the report under target/site/jacoco (i.e.
$/jacoco). You will notice that you can drill down into the package and the
classes to see the coverage, down to individual lines:

Find out more at di�blue.com 17

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

There are three basic colors for the lines:

● Green: the line is completely covered by existing tests.

● Yellow: the line is partially covered. This means that it has been hit,

but as in the example above, only one of the possible branches has

been executed.

● Red: there is no coverage for this line.

There are more details on the coverage color coding and other info in the
documentation. The full source for this tutorial is available here.

Find out more at di�blue.com 18

© Copyright Diffblue Ltd 2021

https://www.eclemma.org/jacoco/trunk/doc/counters.html
https://gitlab.com/diffblue/examples/tictactoe/tree/tutorial-2
https://www.diffblue.com/

eBook

Hopefully, this has been helpful in learning how to enable JaCoCo for your
maven project. In the next chapter, we’ll discuss how to expand your test
suite to ensure that you have comprehensive coverage.

Find out more at di�blue.com 19

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

Chapter 3: How to build a complete test
suite

In Chapter 1, we wrote a single unit test for our example code, which allows
people to make a move and check whether someone has won a game of
Tic-Tac-Toe. In Chapter 2, we generated a code coverage report to see how
much of the code we covered with our single test case.

In this chapter, we will address how to create a complete test suite for this
code. The question is, what is a complete test suite? As discussed in Chapter
2, we could say that a test suite that achieves 80% or more code coverage is
complete. But instead, let’s break that down and think about whether we are
accurately testing the functionality required from the code.

Find out more at di�blue.com 20

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

Let’s dive into the requirements

1. Players take turns to make moves in empty squares until someone
wins.

2. Players can check to see who has won.

Looking at the class board.java, there are four methods:

1. setCell

2. nextPlayer

3. whoHasWon

4. getCell

We won’t consider testing nextPlayer, because this is a private method used
only by the other methods in the class. We expect to gain su�cient coverage
by exercising the other methods. We also don’t need to test getCell directly,
because the code for this method is so simple.

For setCell, I am going to consider the following test cases:

1. Nought can make a move to an empty cell

2. Cross can make a move to an empty cell

3. Cannot make a move to an occupied cell

4. Same player cannot do two moves in succession

5. Cannot make a move once the game is over

For whoHasWon I am going to consider the following tests:

1. Noughts can win through each row

Find out more at di�blue.com 21

© Copyright Diffblue Ltd 2021

https://gitlab.com/diffblue/sales-engineering/TicTacToe/blob/tutorial-3/src/main/java/com/diffblue/javademo/tictactoe/Board.java
https://www.diffblue.com/

eBook

2. Crosses can win through each column

3. Can win through each diagonal

Now is a good time to introduce one of the JUnit rules around exception
handling. If a player tries to occupy a cell that is already occupied, then an
exception will be thrown. Given this is desirable behavior, we want to test this:

@Rule

public ExpectedException exception =

ExpectedException.none();

The above line tells JUnit to create a rule that exceptions should not be
thrown as the test is executed. If an exception is thrown during a test without
this rule, it will not be marked as passed. The important part of defining this
rule is to use it in the test case to say that we expect an exception.

@Test

public void cannotPlaceMoveInUsedCell() {

// Arrange

Board myBoard = new Board();

Coordinate cell = new Coordinate(0,0);

myBoard.setCell(cell, Player.NOUGHT);

// Act

exception.expect(IllegalArgumentException.class);

myBoard.setCell(cell, Player.CROSS);

}

In this test, we are asking our board to place an X in a cell that’s already
occupied. This will generate an IllegalArgumentException. Therefore,
immediately before we try to place an X in an occupied cell, we set the rule
to expect an IllegalArgumentException; if that exception is not thrown, the
test case will fail.

Find out more at di�blue.com 22

© Copyright Diffblue Ltd 2021

https://junit.org/junit5/
https://www.diffblue.com/

eBook

Having written tests for each of the test cases listed earlier, let’s validate our
coverage using the code coverage that we set up in the last tutorial. Here are
the results:

This result looks good: we have covered all the code in the Board class.
However, the Coordinate class has comparatively poor coverage. Let’s look
at this a little closer.

This class was added so we could have the check for a valid location on the
board in a single place. Nowhere in our tests so far have we checked for a
case where the cell provided is invalid.

Let’s create a file CoordinateTest.java and add a test for this. Those of you
who have looked at the code carefully will see that we need to add two tests:
one with the column greater than 2, and the other with the row greater than
2. For the sake of completeness, let’s also add a test that checks the other
side of the boundary, i.e. creating a cell with the max values.

Now we can see that we have a complete set of tests. We are covering all
the required functionality and we are hitting all the lines. As always, the code
for the tutorial is available on GitLab. Next up is Chapter 4, where we’ll talk
about the basics of mocking!

Find out more at di�blue.com 23

© Copyright Diffblue Ltd 2021

https://gitlab.com/diffblue/examples/tictactoe/tree/tutorial-3
https://www.diffblue.com/

eBook

Chapter 4: Mocking in unit tests

Now that you’ve created your first unit test, learned how to calculate code
coverage with JaCoCo, and started to make a more comprehensive test
suite, it’s time to learn a slightly more advanced unit testing skill: mocking.

Mocking is where we substitute the behavior of part of the solution with our
own definition for the purposes of testing. You’re probably thinking that using
mocks means you will need to maintain the user-facing code and the mock,
so what’s the point of making extra work for yourself? Well, you want your
test cases to be deterministic, i.e. to generate the same result no matter
when or how you run them.

There are a couple of di�erent things that can impact test cases and make
them non-deterministic: First is accessing things outside of the program e.g.
Network, Files etc. The second is any behavior that is random or based on
date or time.

Find out more at di�blue.com 24

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

Mocking: Getting Started
Let’s have a look at an example where we can use mocking. A method has
been added to our Tic-Tac-Toe game which will allow the computer to select
the next move for the player. This is based on randomly selecting a cell from
the list of those currently available:

/**

* Choose a random free cell for my next move.

* @param player to place in the cell.

*/

public void randomMove(Player player) {

// Find all the available cells

ArrayList<Coordinate> availableCells =

new ArrayList<>();

for (int i=0; i<3; i++) {

for (int j=0; j<3; j++) {

Coordinate currentCell = new Coordinate(i, j);

if (getCell(currentCell) == null)

}

}

int numOfCells = availableCells.size();

if (numOfCells == 0) {

throw new IllegalArgumentException("Board is full,

cannot place in a move");

}

// Pick a random cell

int index = (int)(Math.random() * numOfCells);

// Put player in that cell

setCell(availableCells.get(index), player);

}

Find out more at di�blue.com 25

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

So how are we going to test this? Essentially, there are two test cases:

1. Player is put into an empty cell

2. Correct error when the build is full

If you’ve followed Chapters 1 through 3 of this series, you already know how
to write a test for the second. But what about the first? We can run the
method and ensure that an exception isn’t thrown, but how are we going to
test that the player has been put in a cell?

The most deterministic approach is to mock the random number generator
so that when the test runs, we know which cell is being used. Before we can
write the test, we need to include a couple of new dependencies; these are
the mocking framework that we are going to use.

Add the following to the dependencies section of our pom.xml:

<dependency>

<groupId>org.powermock</groupId>

<artifactId>powermock-module-junit4</artifactId>

<version>1.6.5</version>

<scope>test</scope>

</dependency>

<dependency>

<groupId>org.powermock</groupId>

<artifactId>powermock-api-mockito</artifactId>

<version>1.6.5</version>

<scope>test</scope>

</dependency>

Now that we have the dependencies set up, let’s have a look at this test:

Find out more at di�blue.com 26

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

@PrepareForTest({Board.class, Math.class})

@Test

public void

randomMoveInputNoughtOutputIndexOutOfBoundsException() {

// Setup mocks

mockStatic(Math.class);

when(Math.random()).thenReturn(0.5);

// Arrange

Board myBoard = new Board();

// Act

myBoard.randomMove(Player.NOUGHT);

// Assert

assertEquals("Player O not in the middle cell",

Player.NOUGHT, myBoard.getCell(new Coordinate(1, 1)));

}

There are some new things here, including the annotation PrepareForTest.
With this, we are telling PowerMock (which we are using for mocking) the
class that we are about to test and the class that we are going to mock.

In this case, we are going to mock the behavior of Math.random. This is a
static method, so we need to start o� by telling PowerMock to mockStatic
the class.

Then, we simply choose a return value that we would like to be returned
when Math.random is called. In this case, 0.5 will provide the index at the
middle of the array. This means that the test can check that O is placed in
the middle cell.

Find out more at di�blue.com 27

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

And there you have it!
Try it out yourself! As always, the full code is available on GitLab. Nextup is
Chapter 5: How to find the time and motivation to unit test.

Find out more at di�blue.com 28

© Copyright Diffblue Ltd 2021

https://gitlab.com/diffblue/examples/tictactoe/tree/tutorial-4
https://www.diffblue.com/

eBook

Chapter 5: Finding the time and
motivation to unit test

If you’ve made it this far into our unit testing guide, then you probably agree
that writing unit tests is a good thing. We’ve covered a few tricks for writing
tests for code that is hard to test in Chapter 4 on Mocking, to hopefully
remove some of the barriers that might keep you from writing tests. But
often, developers still don’t write as many unit tests as they should. Why is
that?

Before we address the reasons that we often hear for not wanting to write
unit tests, let’s pause to remember why we write tests in the first place. We
want to ensure that our code works today, and we want to prevent it from
breaking in the future, whether a breaking change is made by a teammate
or by our future selves.

By writing automated unit tests and running them as part of every build, we
can ensure that we aren’t inadvertently changing the behavior of the code.

Find out more at di�blue.com 29

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

As Martin Fowler has aptly pointed out, “Imperfect tests, run frequently, are
much better than perfect tests that are never written at all.”

Top “Why I’m Not Writing Unit Tests” Excuses

1. “I don’t have time to write all of these unit tests.”

How long does it take to write one unit test? The first unit test in a project is
the hardest because it requires the infrastructure to be in place. But after the
first one is finished, the simpler unit tests that come after can take under five
minutes to write.

Just because you don’t have time to write tons of unit tests doesn’t mean
you have a good excuse to not write any. Developers often plan to come
back and write unit tests later, but this rarely actually happens. The time
pressure making it hard to write a test suite won’t evaporate at a later date,
so find a few moments here and now.

2. “It’s ok if I don’t write unit tests; QA will catch the
bugs.”

Having a good independent QA team does means that any bugs left in early
on won’t reach the customer. However, the turnaround time for the bug to be
found, reported, triaged and returned from QA to the developer to be fixed is
definitely going to be measured in days,if not weeks. If the bug gets found as
part of the build process,it is much quicker, easier and cheaper to fix.

Let’s also remember that QA will report a bug based on the user behavior.
Unit tests help the developer understand where the bug is, and therefore
what should be fixed. If QA reports a bug talking in UI terms on a big product
with multiple interacting parts, you may spend a significant amount of time
finding the root cause of the bug. However, if a unit test fails, you instantly
know where the issue is.

Find out more at di�blue.com 30

© Copyright Diffblue Ltd 2021

https://martinfowler.com/articles/continuousIntegration.html
https://www.diffblue.com/

eBook

3. “Unit tests slow down development due to
maintenance.”

It’s true that unit tests need to be looked after. They will need updating,
adding to, and sometimes replacing as the product grows and changes. It is
worth remembering that every time a unit test fails, it means that the
behavior of the code has changed. Each time this happens, you should be
making a conscious choice about whether you have introduced a bug or a
desirable change in behavior. Each change will still give you some work, but
knowledge is key: Without the unit test, you might not know that you
changed the behavior of the code at all.

4. “Our unit tests are unpredictable. Sometimes they fail
for no apparent reason.”

It’s painful when this happens, and you can count on getting a new failure
just before you want to ship a product. The real question is: is your product
unpredictable, or is the test wrong? If it’s your product then you’re going to
have the same challenges debugging customer issues that you do
debugging your tests, except you might not have access to the customer
environment. Either way, this is something that needs investigating and
fixing.

As we’ll discuss further, when you’re unit testing, perfection is not required.
Instead, get on with writing a few test cases and see the rewards they grant
you further down the line.

Find out more at di�blue.com 31

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

Chapter 6: How to avoid common
mistakes

We have other guides on the common mistakes committed when writing
unit tests, and it’s important to understand and recognize when we’re
making these mistakes. But even more important is learning how to avoid
them in the first place. In this chapter, we’ll discuss exactly that!

Use good metrics
In testing, it’s easy to get hung up on the wrong metrics. We want a
comprehensive unit test suite, but what does comprehensive mean to us and
our project? There’s not a single answer to this question, but by picking the
correct metric(s) to measure yourself and others by, you will be able to
provably deliver a valuable unit test suite.

Find out more at di�blue.com 32

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/blog/testing/the-top-5-unit-testing-sins
https://www.diffblue.com/blog/testing/the-top-5-unit-testing-sins
https://www.diffblue.com/

eBook

Summarize the purpose and value of each test
The first principle of Test Driven Development (TDD) says to write your test
suite before writing your code. Using this approach, we have to think about
the complete behavior of the code prior to writing a line of it. Without
existing code clouding our judgement, we end up writing tests based on
specific expected behaviors, which prevents writing tests for the sake of
writing tests or chasing arbitrary coverage targets.

You don’t have to be doing full-on TDD to avoid this mistake. When you start
writing tests, try adding a couple of lines to the test: one giving you the
purpose of the test (“What is it trying to test?”) and the other saying what
the value is (“Why will the end user will care if the test fails?”). If you cannot
answer one or both of the questions, then ask yourself: Should this test exist?

Treat test code the same as production code
Test code will cause the build to fail if one of the tests fails. It may not
actually be used by the user, but in a modern DevOps environment where
you are trying to do multiple releases per day, having poor quality test cases
will lead to frustration through intermittent build failures.

This is why it’s important to apply the same coding standards to your test
code as your production code. The number of tools, such as linters, that
ignore test code is astounding. Just like maintaining production code,
someone else on the team (or future you) will have to debug and maintain
your tests. You want to make this as easy as possible.

‘Always code as if the person who ends up maintaining your
code is a violent psychopath who knows where you live.’

Code For The Maintainer

There is no magic bullet that will ensure you always write the best test cases
possible. However, like anything else in the art of coding, it’s important to set
a baseline for what is good enough for your needs and ensure that you
always stay above this line. With this in mind, and a culture that makes
testing as important as writing production code, you won’t go wrong.

Find out more at di�blue.com 33

© Copyright Diffblue Ltd 2021

http://wiki.c2.com/?CodeForTheMaintainer
http://wiki.c2.com/?CodeForTheMaintainer
https://www.diffblue.com/

eBook

Chapter 7: How automated unit tests
speed up continuous integration

Bugs are big problems for development teams. They’re annoying.They pop
up at the worst time. And they’re expensive, particularly when they’re found
late in the development process or after the application has already been
released.In this chapter, we‘ll discuss how unit tests can help find bugs as
part of continuous integration (CI).

Why are regression bugs so important to prevent?
First, let’s get definitions straight: A bug is classified as a regression if it is a
new bug that changes the behavior of the system negatively. A new feature
bug exists entirely within a new feature.

By now, you might be thinking of a company or product you use that has
impacted you through a bug introduced during an upgrade, eroding trust
between you and the vendor. For business-to-business relationships, this can

Find out more at di�blue.com 34

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

be enough to cause financial penalties in the contract, or even mean that the
client looks around for a new vendor.

These are the bugs that convert to severity zero/one customer issues very
quickly. When a customer can no longer do their job, they will rightly expect
your development and support teams to be sweating while trying to fix their
issues.

If regressions are so important, why aren’t they
tested for more often?
Simple answer: It’s boring! By the third release, testing the same feature
manually rarely holds much excitement for the engineer doing the testing.
Management is only interested if a serious bug is found, and even then,it is
an inconvenience to the timetable.

Therefore, most testers will spend the majority of their time working on
testing new features. This is the fun and exciting area of working in a QA
team: Being able to shape the product before anyone else.

What’s the solution?
Automation, automation and a little more automation. Finding regressions is
exactly the task that automated testing does well. To stop the pain caused
by these bugs, the answer is simple: ensure that your regression coverage is
adequate. It’s not always reasonable to expect QA/QE to find regression
bugs, so it’s time for developers to make the time to do more automated
testing. But how? And where in the pipeline?

The key to regressions and continuous integration is to do as much as
possible, as early as possible. But that can be overwhelming for developers,
who are usually creating code and tests during the earliest phases of the
pipeline.

For organizations following DevOps practices, introducing automated
regression tests in the first phases of software development shortens the

Find out more at di�blue.com 35

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

time to delivery by showing the di�erences between builds right after new
commits are made.

Image Source

These tests are designed to run quickly and perform basic logical validation
at the unit level. Without these tests, basic errors advance into the mainline
and risk breaking it, and it takes a lot longer to find and fix those bugs later
on.This is why, to have a truly continuous CI pipeline, regression tests should
be used as early as possible.

In the next chapter, we’ll go into more detail about how unit tests canmake
DevOps goals achievable.

Find out more at di�blue.com 36

© Copyright Diffblue Ltd 2021

https://medium.com/tech-tajawal/devops-in-a-scaling-environment-9d5416ecb928
https://www.diffblue.com/

eBook

Chapter 8: How to deliver on the
promises of DevOps

As discussed in Chapter 7, DevOps was designed to empower individuals and
allow teams to reduce the time required to bring features into production.
This promise always resonates with leaders. But when it comes to reality,
development and operations teams often put a lot of e�ort into introducing
DevOps, only to discover that they don’t have the return on the investment
that leaders expect.

Find out more at di�blue.com 37

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

Image Source

At its heart, the DevOps process looks like the image above: the product
goes through a cycle of Build, Test, Release, Monitor, Repeat. All the team
members are encouraged to get involved at each of the stages and ensure
the success of the product. Releases are sped up—to speeds reaching one
release per day, rather than one release per year—and with greater
automation comes higher performance.

But the problem with DevOps is an old one: too many cooks spoil the broth.

Cutting Corners
Given the modern development desire to release as soon as we have a
minimum viable product (MVP) it often happens that corners are cut to get
each version out. After a few releases, what was meant to be a square has
had so many cut corners that it’s starting to look a lot like a circle.

Now suppose the product has a few rough edges and the development team
is empowered to get involved with solving customer issues. Customer issues
trickle in, developers help to resolve those issues, and before long, the
developers find themselves spending half their week on customer issues
rather than the next piece of work on their list. Suddenly, productivity drops
dramatically.

Find out more at di�blue.com 38

© Copyright Diffblue Ltd 2021

https://medium.com/tech-tajawal/devops-in-a-scaling-environment-9d5416ecb928
https://cloud.google.com/blog/products/devops-sre/the-2019-accelerate-state-of-devops-elite-performance-productivity-and-scaling
https://cloud.google.com/blog/products/devops-sre/the-2019-accelerate-state-of-devops-elite-performance-productivity-and-scaling
https://www.diffblue.com/

eBook

Don’t Let Quality Slip
Continuous Integration and Continuous Deployment means that we can get
features into the hands of customers quicker than we have ever done before.
However, this means that we can quickly force our new bugs upon our
customers. While breaking down the barriers between teams and the formal
release stages that existed in previous models, developers and operations
need to hold themselves to the same or higher standards of quality, and the
only way to do this is by incorporating testing into every stage of the
DevOps cycle, with tests that run automatically (and, as often as possible,
are created automatically too):

Image Source

DevOps can bring the same benefits to the product lifecycle that SCRUM
brings to the development lifecycle. Given all the technology advances that
delivered true SCRUM for example continuous integration systems, it’s time
for the same advancement in the DevOps world. By ensuring software is
tested as rigorously as possible, maintenance headaches will be minimized
and the promised productivity enhancement can be delivered.

Find out more at di�blue.com 39

© Copyright Diffblue Ltd 2021

https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/
https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/
https://danashby.co.uk/2016/10/19/continuous-testing-in-devops/
https://www.diffblue.com/

eBook

Deliver a Complete Test Suite
To reap the benefits of DevOps, you can’t a�ord to stick with manual
processes or risk merging regressions late in the build process. By providing
a complete, automated test suite, the development team can ensure that the
rigorous testing required is delivered.If there isn’t time for the team to write
these tests themselves, the right tools can help. Di�blue Cover provides a
way to quickly generate the tests you need for Continuous Integration, and
automatically update the tests as the codebase changes over time. Code
quality demands a better solution, and increasingly, that means automating
test creation.

Find out more at di�blue.com 40

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/products
https://www.diffblue.com/

eBook

Epilogue: Why imperfect tests are better
than no tests

Developers want to produce high quality products, but we’re often asked to
do this with fewer resources and less time than we would like. The balancing
act between quality, cost and speed has never rested on the shoulders of
developers as much as it does today. Companies assume developers are
agile, and therefore can easily introduce CI and CD and shift left product
development. Once this small task has been completed, development rates
will accelerate and teams will deliver features at 10x the current rate.

If only it were that simple
Behind every buzzwordy new approach is the assumption that it can be
implemented perfectly. However, given the pressures that development
teams are under, the question we should start thinking about is: what is good
enough to deliver a return? Let’s turn to our automated test suite, which is
integral in accelerating our development processes. What are we trying to

Find out more at di�blue.com 41

© Copyright Diffblue Ltd 2021

https://www.diffblue.com/

eBook

achieve? We want each build to be self-testing, i.e. to give us a clean bill of
health (or report an issue). Reporting issues is the easy bit: if a test fails, the
build is marked as broken and people can immediately look into it.

Getting a clean bill of health from the build passing is much harder. We are
trying to prove the absence of bugs. Therefore,we can consider the perfect
test suite as one where, if the build passes, there are no bugs in the software.
This is a lofty goal, however—as momentous as trying to prove that aliens
don’t exist.

Having realized that it is impossible to create the perfect suite of tests, but
being under pressure to deliver anyway, often leads to teams simply not
writing unit tests and instead raising tickets saying, “We should write unit
tests for feature x.” This is a compromise. But is it the best compromise?

Rather than rationalizing the decision not to write tests because of time
shortages, how about asking yourself this: Do I have time to write one test? If
the answer is yes, then write that one test. And keep going until you run out
of time. It’s true that this won’t lead to a perfect test suite. But as Martin
Fowler says: “Imperfect tests are better than perfect tests that are never
written.”

All too often there is a tug-of-war between teams when tests fail. Teams ask:
are the tests wrong, or is the code wrong? If we stop thinking about the tests
failing and instead think about tests reporting change in the product, then
rather than looking for blame, we can consider whether the change is
desirable or not.

Given a spare half an hour each day, we could all write a new test and
gradually increase overall code quality. Remember: the test doesn’t have to
be perfect; it just has to be good enough to highlight an issue when it fails.

If you want to kick start your testing writing process then take a look at
Di�blue Cover. The tests may not represent all of your business logic, but
they will give you a lot more confidence in your code much more quickly
than you can get with human test-writing e�orts alone.

Find out more at di�blue.com 42

© Copyright Diffblue Ltd 2021

https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://www.diffblue.com/products
https://www.diffblue.com/

